Habitat preference and diversification rates in a speciose lineage of diving beetles

Abstract

The long-term geological stability of aquatic habitats has been demonstrated to be a determinant in the evolution of macroinvertebrate fauna, with species in running (lotic) waters having lower dispersal abilities, smaller ranges and higher gene flow between populations than species in standing (lentic) environments. Lotic species have been hypothesized to be more specialised, but the diversification dynamics of both habitat types have not been studied in detail. Using a speciose lineage of water beetles we test here whether diversification rates are related to the habitat preference of the species and its consequences on turnover, which we expect to be higher for lotic taxa. Moreover, we tested whether life in lotic environments is acting as an evolutionary dead-end as it is considered as ecological specialisation. We built a comprehensive molecular phylogeny with 473 terminals representing 421 of the 689 known species of the tribe Hydroporini (Coleoptera, Dytiscidae), using a combination of sequences from four mitochondrial and two nuclear genes plus 69 mitogenomes obtained with NGS. We found a general pattern of gradual acceleration of diversification rate with time, with 2 to 3 significant diversification shifts. However, habitat is not the main factor driving diversification in Hydroporini based on SecSSE analyses. The most recent common ancestor of Hydroporini was reconstructed as a lotic species, with multiple shifts to lentic environments…

Publication
Molecular Phyogenetics and Evolution, Vol 159, 107087

Related